Social Announcement Logic

Done, Doing, and To Do

Rui Zhu

Supervised by Dr. Jeremy Seligman


Department of Philosophy, Humanities, UNIVERSITY OF AUCKLAND

Motivations

  • Can we establish a logical framework for reasoning about the effects of communication constrained by network structures?
  • Example
Aladdin
🡹
Bulma
🡸 Chopper

âť“âť“âť“
Doraemon

Literature Review

    Different forms of communication can be modeled using the action frameworks of Dynamic Epistemic Logic.

  • $B_{a} \theta$ means "agent $a$ believes the statement $\theta$."
  • $\langle X\rangle\phi$ expresses "the statement $\phi$ holds after the action $X$ occurs."



Public Announcement Logic

Plaza (1989)
Gerbrandy and Groeneveld (1997)
van Ditmarsch, van Der Hoek, and Kooi (2007)

Logics of Social Networks

Seligman, Liu, and Girard (2013)
Christoff (2016)
Xiong (2017)

Protocols

    $[a: \theta](B_{b}\gamma \wedge \neg B_{c}\gamma)$ is read as "After agent $a$ announces $\theta$ to its followers, agent $b$ believes $\gamma$, while agent $c$ does not."

  • Both beliefs (e.g., $\gamma$) and announcements (e.g., $\theta$) are represented at the propositional level.
  • Agents are conservative; they never discard their current beliefs.
  • For example, nodes circled in white indicate the denotation of proposition $p$, while nodes circled in orange constitute an agent's belief state.
$$ \begin{tikzpicture}[node distance=1.5cm ] \node(A4) [text=white] {$p,q,r$}; \node(B2) [below of= A4, text=white ] {$ p,q$}; \node(B1) [left of= B2 , text=white] {$ p,r$}; \node(B3) [right of=B2, text=white] {$ q,r $}; \node(D1) [below of=B1, text=white] {$p$}; \node(D2) [right of=D1, text=white] {$q$}; \node(D3) [right of=D2, text=white] {$r$}; \node(E) [below of=D2, text=white] {$\varnothing$}; \draw[white, line width=1pt] (A4) circle (18pt); \draw[white, line width=1pt] (B2) circle (18pt); \draw[white, line width=1pt] (B1) circle (18pt); \draw[white, line width=1pt] (D1) circle (18pt); \draw[orange, line width=1pt] (D1) circle (15pt); \draw[orange, line width=1pt] (B1) circle (15pt); \draw[orange, line width=1pt] (B2) circle (15pt); \end{tikzpicture} $$
$$ \begin{tikzpicture}[node distance=1.5cm ] \node(A4) [text=white] {$p,q,r$}; \node(B2) [below of= A4, text=white ] {$ p,q$}; \node(B1) [left of= B2 , text=white] {$ p,r$}; \node(B3) [right of=B2, text=white] {$ q,r $}; \node(D1) [below of=B1, text=white] {$p$}; \node(D2) [right of=D1, text=white] {$q$}; \node(D3) [right of=D2, text=white] {$r$}; \node(E) [below of=D2, text=white] {$\varnothing$}; \draw[white, line width=1pt] (A4) circle (18pt); \draw[white, line width=1pt] (B2) circle (18pt); \draw[white, line width=1pt] (B1) circle (18pt); \draw[white, line width=1pt] (D1) circle (18pt); \draw[orange, line width=1pt] (B1) circle (15pt); \end{tikzpicture} $$

Semantics

A model $m = (f, k)$ is a tuple where $f$ represents a social network and function $k$ represents an epistemic distribution.

$$ \begin{tikzpicture}[node distance=1.5cm] % Define nodes with white text \node(A) [text = white] {\textbf{model} $m_1$}; \node(A1) [below of=A, text=orange] {$a$}; \node(A2) [left of=A1, text=cyan] {$b$}; \node(B1) [below of=A1, text=magenta] {$c$}; % Corrected from B1 to A1 \node(B2) [left of=B1, text=green] {$d$}; % Draw arrows \draw[->, white] (A1) .. controls +(up:19mm) and +(right:15mm) .. (A1); \draw[->, white] (A2) -- (A1); \draw[->, white] (B1) -- (A1); \draw[->, white] (B2) -- (B1); \end{tikzpicture} \\ \\ \begin{tikzpicture}[node distance=1.5cm ] \node(A4) [text=white] {$p,q,r$}; \node(B2) [below of= A4, text=white ] {$ p,q$}; \node(B1) [left of= B2 , text=white] {$ p,r$}; \node(B3) [right of=B2, text=white] {$ q,r $}; \node(D1) [below of=B1, text=white] {$p$}; \node(D2) [right of=D1, text=white] {$q$}; \node(D3) [right of=D2, text=white] {$r$}; \node(E) [below of=D2, text=white] {$\varnothing$}; \draw[orange, line width=1pt] (A4) circle (21pt); \draw[orange, line width=1pt] (B1) circle (21pt); \draw[cyan, line width=1pt] (B1) circle (18pt); \draw[cyan, line width=1pt] (D1) circle (18pt); \draw[magenta, line width=1pt] (D1) circle (15pt); \draw[magenta, line width=1pt] (E) circle (15pt); \draw[green, line width=1pt] (B3) circle (13pt); \draw[green, line width=1pt] (D2) circle (13pt); \draw[green, line width=1pt] (D3) circle (13pt); \end{tikzpicture} $$
  • $\color{orange}{a}$ believes $p$ and $r$, $B_{a}(p \wedge r)$, but does not believe $q$, $\neg B_{a}q$.
  • $\color{cyan}{b}$ believes $p$, $B_{b}p$, but does not believe $r$, $\neg B_{b}r$.
  • $\color{magenta}{c}$ believes $\neg q$, $B_{c}\neg q$, but does not believe $p$, $\neg B_{c}p$.
  • $\color{lightgreen}{d}$ does not believe $r$, $\neg B_{d}r$, but believes either $q$ or $r$, $B_{d}(q \vee r)$.
  • After $\color{orange}{a}$ announces $r$, the updated model $[a:r]m_{1}$ satisfies $B_{b}r \wedge B_{c}p \wedge \neg B_{d}r$. $$\begin{tikzpicture}[node distance=1.5cm ] \node(A4) [text=white] {$p,q,r$}; \node(B2) [below of= A4, text=white ] {$ p,q$}; \node(B1) [left of= B2 , text=white] {$ p,r$}; \node(B3) [right of=B2, text=white] {$ q,r $}; \node(D1) [below of=B1, text=white] {$p$}; \node(D2) [right of=D1, text=white] {$q$}; \node(D3) [right of=D2, text=white] {$r$}; \node(E) [below of=D2, text=white] {$\varnothing$}; \draw[orange, line width=1pt] (A4) circle (21pt); \draw[orange, line width=1pt] (B1) circle (21pt); \draw[cyan, line width=1pt] (B1) circle (18pt); \draw[green, line width=1pt] (B3) circle (13pt); \draw[green, line width=1pt] (D2) circle (13pt); \draw[green, line width=1pt] (D3) circle (13pt); \end{tikzpicture} $$

Axiomatization

The formal system $\mathsf{Fsal}$ is sound and strongly complete.

Axioms [Taut]~All substitution instances of propositional tautologies
[K$_{\top}$] $B_{i}\theta$ where $\theta$ is an instance of propositional tautology.
[K{$_B$}] $B_{a}(\theta \rightarrow \gamma) \rightarrow (B_{a}\theta \rightarrow B_{a}\gamma)$
[K$_{[:]}$] $[a:\theta](\phi \rightarrow \psi) \rightarrow ([a:\theta]\phi \rightarrow [a:\theta]\psi)$
[$[:]$-Dual] $\neg [a:\theta]\phi \leftrightarrow [a:\theta]\neg\phi$
[UMon] $B_{b}\chi\rightarrow[a:\theta]B_{b}\chi$
[SDMon] $[a:\theta]B_{b}\chi\rightarrow B_{b}(\theta\rightarrow\chi)$
[RDMon] $[a:\gamma]\neg B_{b}\gamma\rightarrow([a:\theta]B_{b}\chi\rightarrow B_{b}\chi)$
Rules [MP] From $(\phi \rightarrow \psi), \phi $, infer $ \psi$
[$[:]$-Nec] From $\vdash\phi$, infer $\vdash[a:\theta]\phi$

  • Sincere social announcement, $\langle a!\theta \rangle$, which requires $\theta$ be $a$'s belief.
  • [SRed] $\langle a!\theta\rangle\phi\leftrightarrow (B_{a}\theta \wedge [a:\theta]\phi)$
  • For logic of sincere social announcement, refer to Xiong et al. (2017).

Free Announcement v.s. Sincere Announcement

The belief space, stored in the cloud, is accessed server-side to determine the network structure.

Arbitrary Announcement

The formula for an arbitrary social announcement, denoted by $\langle a \rangle\phi$ or $\langle a!\rangle \phi$, signifies that agent $a$ is capable of making a (sincere) social announcement such that $\phi$ holds.

$\langle a\rangle\phi$: "After $a$ makes an announcement to its followers, $\phi$ is true."
$\langle a!\rangle\phi$: "After $a$ sincerely makes an announcement to its followers, $\phi$ is true."

Noncompactness

The logic of $L_{SAL}$ is not compact. Here are two counterexamples.

$\{\langle a\rangle(B_{a}\bot \wedge \neg B_{b}\bot), \langle a\rangle B_{b}\bot \}\cup \{\neg B_{a}\theta ~~|~~ \theta~~is~~not~~an~~instance ~~of~~tautology~~\}$
$\{\langle a!\rangle B_{b}p \wedge \neg B_{b} p \}\cup\{\neg B_{a}\theta ~~|~~ \theta~~is~~not~~an~~instance~~of~~tautology~~\}$

Framework

Language of APAL $\mathsf{A}$ is a finite set of agents. $\mathsf{Prop}$ is the set of propositional variables. A message is defined as follows
\[ \theta := p~|~\neg \theta~|~(\theta\wedge \theta)\] And we define language $L_{SAL}$ by specifying
\[ \phi := B_{a} \theta~|~\neg\phi~|~(\phi\wedge\phi)~|~[a: \theta]\phi~|~\langle a! \theta\rangle\phi~|~\langle a \rangle\phi~|~\langle a! \rangle\phi \] where $p\in \mathsf{Prop}$, $a \in A$ and for each $a$ there is a modality $B_{a}$ in $L_{SAL}$

Denotation
\[V = 2^{\mathsf{Prop}} \\ \llbracket p \rrbracket = \{x \in V ~|~ p \in x \} \\ \llbracket \neg \theta \rrbracket = V \backslash \llbracket \theta \rrbracket \\ \llbracket (\theta_1 \wedge \theta_2) \rrbracket = \llbracket \theta_1\rrbracket \cap \llbracket\theta_2 \rrbracket\]
Model

$~~~~~~~~(f, k)\vDash [a:\theta] \phi \Leftrightarrow [a:\theta](f, k)\vDash \phi$
in which $[a:\theta](f, k) = (f, [a:\theta]k)$
where $[a:\theta]k(b) = \begin{cases} k(b)\cap \llbracket \theta \rrbracket~~~~ {\rm if}~b\in f(a), \\ k(b)~~~~~~{\rm otherwise} \end{cases}$
$~~~~~~~~(f, k)\vDash \langle a!\theta\rangle \phi \Leftrightarrow [a:\theta](f, k)\vDash \phi~\&~k(a)\subseteq \llbracket \theta\rrbracket$
$~~~~~~~~(f, k)\vDash \langle a\rangle\phi \Leftrightarrow \exists\theta [a :\theta](f, k) \vDash \phi$
$~~~~~~~~(f, k)\vDash \langle a!\rangle\phi \Leftrightarrow \exists\theta (k(a) \subseteq \llbracket \theta\rrbracket~\&~[a :\theta](f, k) \vDash \phi)$

Kuijer's Counterexample

Arbitrary announcements, denoted by $\Diamond$, have been studied in $\mathsf{APAL}$. Currently we do not know if $\mathsf{APAL}$ has finitary axiomatization due to Kuijer's Counterexample. The following rule does not preserve validity:

From $ \langle \chi\rangle\langle q\rangle\phi\rightarrow\psi$, infer $ \langle \chi\rangle\Diamond\phi\rightarrow\psi$ where $q\not\in Var(\psi)\cup Var(\phi)\cup Var(\chi)$. $\vDash \langle \top\rangle\langle q\rangle(p \wedge \neg B_{b}p \wedge \widehat{B_{a}} B_{b}p)\rightarrow \langle \widehat{B_{b}} p\rangle \Diamond (p \wedge \neg B_{b}p \wedge \widehat{B_{a}} B_{b}p)$
$m, w_{1}\not\vDash \langle \top\rangle\Diamond(p \wedge \neg B_{b}p \wedge \widehat{B_{a}} B_{b}p)\rightarrow \langle \widehat{B_{b}} p\rangle \Diamond (p \wedge \neg B_{b}p \wedge \widehat{B_{a}} B_{b}p)$

Main Results

In Chapter 3, we use free message model technique to show the following rules preserve validity.
From $\langle a!p\rangle\phi \rightarrow \psi $, infer $ \langle a!\rangle\phi \rightarrow \psi$
From $[a:p]\phi \rightarrow \psi$, infer $\langle a\rangle\phi\rightarrow \psi$
where $p$ is a propositional variable that does not occur $\phi$ or $\psi$.
$$\begin{tikzpicture}[node distance=1.2cm] \title{Before Announcement} \node(A1) [text=white] {$p,q,r$}; \node(A2) [right of= A1, text=white] {$p,q,s$}; \node(A4) [right of=A2, text=white] {$p, r,s $}; \node(A3) [right of=A4, text=white] {$q, r,s ...$}; \node(B2) [below of= A1, text=white] {$ p,r$}; \node(B1) [left of= B2, text=white] {$ p,q$}; \node(B3) [right of=B2, text=white] {$ p,s $}; \node(B4) [right of= B3, text=white] {$ q,r$}; \node(B5) [right of= B4, text=white] {$ q,s$}; \node(B6) [right of=B5, text=white] {$ r,s ... $}; \node(D1) [below of=B1, text=white] {$p$}; \node(D2) [right of=D1, text=white] {$q$}; \node(D3) [right of=D2, text=white] {$r$}; \node(D4) [right of=D3, text=white] {$s ...$}; \node(E) [below of=D2, text=white] {$\varnothing$}; \draw[orange, line width=1pt] (B1) circle (12pt); \draw[orange, line width=1pt] (B2) circle (12pt); \draw[orange, line width=1pt] (D1) circle (12pt); \draw[orange, line width=1pt] (D3) circle (12pt); \draw[cyan, line width=1pt, dotted] (A1) circle (10pt); \draw[cyan, line width=1pt, dotted] (B4) circle (10pt); \draw[cyan, line width=1pt, dotted] (D3) circle (10pt); \draw[magenta, line width=1pt, dashed] (A1) circle (14pt); \draw[magenta, line width=1pt, dashed] (D2) circle (14pt); \draw[magenta, line width=1pt, dashed] (E) circle (14pt); \end{tikzpicture}$$
$$\begin{tikzpicture}[node distance=1.2cm] \title{After announcement} \node(A1) [text=white] {$p,q,r$}; \node(A2) [right of= A1, text=white] {$p,q,s$}; \node(A4) [right of=A2, text=white] {$p, r,s $}; \node(A3) [right of=A4, text=white] {$q, r,s ...$}; \node(B2) [below of= A1, text=white] {$ p,r$}; \node(B1) [left of= B2, text=white] {$ p,q$}; \node(B3) [right of=B2, text=white] {$ p,s $}; \node(B4) [right of= B3, text=white] {$ q,r$}; \node(B5) [right of= B4, text=white] {$ q,s$}; \node(B6) [right of=B5, text=white] {$ r,s ... $}; \node(D1) [below of=B1, text=white] {$p$}; \node(D2) [right of=D1, text=white] {$q$}; \node(D3) [right of=D2, text=white] {$r$}; \node(D4) [right of=D3, text=white] {$s ...$}; \node(E) [below of=D2, text=white] {$\varnothing$}; \draw[orange, line width=1pt] (B4) circle (12pt); \draw[orange, line width=1pt] (B5) circle (12pt); \draw[orange, line width=1pt] (D2) circle (12pt); \draw[orange, line width=1pt] (D4) circle (12pt); \draw[cyan, line width=1pt, dotted] (A3) circle (10pt); \draw[cyan, line width=1pt, dotted] (B6) circle (10pt); \draw[cyan, line width=1pt, dotted] (D4) circle (10pt); \draw[magenta, line width=1pt, dashed] (A3) circle (14pt); \draw[magenta, line width=1pt, dashed] (D3) circle (14pt); \draw[magenta, line width=1pt, dashed] (E) circle (14pt); \end{tikzpicture}$$
A set of formulas is greedy if it contains a cofinite set of atomic messages. We have a finitary complete axiomatization $\mathsf{sal}$: Any non-greedy consistent set is satisfiable.

Finitary Axiomatization

The formal system $\mathsf{sal}$ is $\mathsf{Fsal}$ plus the following:

Axioms
[SRed] $\langle a!\theta\rangle\phi\leftrightarrow (B_{a}\theta \wedge [a:\theta]\phi)$
[$K^{S}_A$] $[a!](\phi \rightarrow \psi) \rightarrow ([a!]\phi \rightarrow [a!]\psi)$
[$K^{F}_{A}$] $[a](\phi \rightarrow \psi) \rightarrow ([a]\phi \rightarrow [a]\psi)$
[$A^{S}$I] $\langle a!\theta\rangle\phi \rightarrow \langle a!\rangle\phi$
[$A^{F}$I] $[a:\theta]\phi \rightarrow \langle a\rangle\phi$
Rules
[$[a]$-Nec] From $ \phi$, infer $ [a]\phi$
[$[a!]$-Nec] From $\phi$, infer $ [a!]\phi$
[$A^{S}$E] From $\langle a!p\rangle\phi \rightarrow \psi $, infer $ \langle a!\rangle\phi \rightarrow \psi$
[$A^{F}$E] From $[a:p]\phi \rightarrow \psi$, infer $\langle a\rangle\phi\rightarrow \psi$
where $p$ is a propositional variable that does not occur $\phi$ or $\psi$.

$\mathsf{sal}$ is a sound and weakly complete finitary axiomatization.

Tableau Calculus

In Chapter 4, we present a complete and non-greedy compact tableau system.

we test the following set of formulas: \[ \{ \langle a!\rangle B_{b}q \wedge \neg B_{b}q, ~~~~ [a:p]\neg B_{b}p\} \\ \Rightarrow unsatisfiable. \\ \{ \langle a!\rangle (B_{b}q \wedge \neg B_{c}r), ~~~~ \langle b!p\rangle (B_{c}p \wedge \neg B_{a}p), ~~~[a:r](\neg B_{b}r \wedge B_{c}r) \} \\ \Rightarrow \{cFa, \neg aFb, \neg bFa, B_{b}p \} \]

Epistemic Distribution

Coherences

We define five coherences for our original models.

  • Global coherence: All agents' beliefs are collectively consistent.
  • Local coherence: No individual agent's beliefs become inconsistent following sincere announcements.
  • Weak coherence: Each agent's beliefs are internally consistent.
  • Cohesive coherence: Agents with inconsistent beliefs are separated.
  • Flowing coherence: No contradictory flow can be made.

Results

  • Following relationship expressible: wc, cc, lc, gc.
  • Definable: fc, wc.
  • Failure of free announcement necessitation: Indirect axiomatizations are needed.
  • Preversing validity by sincere announcement necessitation: cc, lc, gc.
$$\begin{tikzpicture} \definecolor{bubbles}{rgb}{0.91, 1.0, 1.0} \definecolor{capri}{rgb}{0.0, 0.75, 1.0} \definecolor{celadon}{rgb}{0.67, 0.88, 0.69} \definecolor{cottoncandy}{rgb}{1.0, 0.74, 0.85} \definecolor{deepcerise}{rgb}{0.85, 0.2, 0.53} \definecolor{chartreuse}{rgb}{0.87, 1.0, 0.0} \definecolor{britishracinggreen}{rgb}{0.0, 0.26, 0.15} \begin{scope} [fill opacity = .5] \draw[fill= bubbles] (-5,5) rectangle (8,-3); \draw[fill=celadon, draw = black] (-1.5,1) circle (3); \draw[fill=deepcerise, draw = black] (1.55,1) circle (2.87); \draw[fill=cottoncandy, draw = black] (2.65,1) ellipse (5cm and 3.2cm); % Adjusted this line \draw[fill=capri, draw = black] (0,1) circle (1); \node at (-4,4) {\color{chartreuse}\LARGE\textbf{SAL}}; \node at (-3,2.5) {\color{britishracinggreen}\LARGE\textbf{wc}}; \node at (5,2.5) {\color{britishracinggreen}\LARGE\textbf{fc}}; \node at (2.5, 2.5) {\color{britishracinggreen}\LARGE\textbf{cc}}; \node at (0,2.5) {\color{britishracinggreen}\LARGE\textbf{lc}}; \node at (0, 1) {\color{britishracinggreen}\LARGE\textbf{gc}}; \end{scope} \end{tikzpicture} $$

Variants

In Chapter 5, we explore some potential variants of social announcement logic.

  • Partial Diffusion: Only some of the speaker's followers receive and update their beliefs with the announcement.
  • Cascading Broadcast: Everyone automatically broadcasts the message they receive unless it contradicts their existing beliefs.
  • Unfollowing: Agents unfollow those who share messages that conflict with their current beliefs.

Relational Semantics

$$\begin{tikzpicture}[node distance=1.1cm] % Define nodes with white text \node(A) [text = white] {$f$}; \node(A1) [below of=A, text=orange] {$a$}; \node(A2) [left of=A1, text=green] {$d$}; \node(B1) [below of=A1, text=cyan ] {$b$}; % Corrected from B1 to A1 \node(B2) [left of=B1, text=magenta] {$c$}; % Draw arrows \draw[->, white] (A1) .. controls +(up:19mm) and +(right:15mm) .. (A1); \draw[->, white] (B1) .. controls +(down:19mm) and +(right:15mm) .. (B1); \draw[->, white] (B1) -- (A1); \draw[->, white] (B2) -- (B1); \end{tikzpicture} \\ \begin{tikzpicture}[node distance=1.1cm] \title{Arbitrary Announcement} \node(A4) [white] {$p,q,r$}; \node(B2) [below of= A4, white] {$ p,q$}; \node(B1) [left of= B2, white] {$ p,r$}; \node(B3) [right of=B2, white] {$ q,r $}; \node(D1) [below of=B1, white] {$p$}; \node(D2) [right of=D1, white] {$q$}; \node(D3) [right of=D2, white] {$r$}; \node(E) [below of=D2, white] {$\varnothing$}; \node(F) [below of=E, white] {$k~~~~(w)$ }; \draw[orange, line width=1pt] (B1) circle (16pt); \draw[cyan, line width=1pt, dotted] (B1) circle (14pt); \draw[cyan, line width=1pt, dotted] (D1) circle (14pt); \draw[magenta, line width=1pt, dashed] (D1) circle (12pt); \draw[green, line width=1pt, dashdotdotted] (B3) circle (12pt); \draw[green, line width=1pt, dashdotdotted] (D2) circle (12pt); \draw[green, line width=1pt, dashdotdotted] (D3) circle (12pt); \end{tikzpicture} $$
$$\begin{tikzpicture}[node distance=1cm] \title{Arbitrary Announcement} \node(A4) [white] {$p,q,r$}; \node(B2) [below of= A4, white] {$ p,q$}; \node(B1) [left of= B2, white] {$ p,r$}; \node(B3) [right of=B2, white] {$ q,r $}; \node(D1) [below of=B1, white] {$p$}; \node(D2) [right of=D1, white] {$q$}; \node(D3) [right of=D2, white] {$r$}; \node(E) [below of=D2, white] {$\varnothing$}; \node(F) [below of=E, white] {$[a:r]k~~~~(w_1)$ }; \draw[orange, line width=1pt] (B1) circle (16pt); \draw[cyan, line width=1pt, dotted] (B1) circle (14pt); \draw[magenta, line width=1pt, dashed] (D1) circle (12pt); \draw[green, line width=1pt, dashdotdotted] (B3) circle (12pt); \draw[green, line width=1pt, dashdotdotted] (D2) circle (12pt); \draw[green, line width=1pt, dashdotdotted] (D3) circle (12pt); \end{tikzpicture} \\ \begin{tikzpicture}[node distance=1cm] \title{Arbitrary Announcement} \node(A4) [white] {$p,q,r$}; \node(B2) [below of= A4, white] {$ p,q$}; \node(B1) [left of= B2, white] {$ p,r$}; \node(B3) [right of=B2, white] {$ q,r $}; \node(D1) [below of=B1, white] {$p$}; \node(D2) [right of=D1, white] {$q$}; \node(D3) [right of=D2, white] {$r$}; \node(E) [below of=D2, white] {$\varnothing$}; \node(F) [below of=E, white] {$[a:\neg r]k~~~~(w_2)$}; \draw[cyan, line width=1pt, dotted] (D1) circle (14pt); \draw[magenta, line width=1pt, dashed] (D1) circle (12pt); \draw[green, line width=1pt, dashdotdotted] (B3) circle (12pt); \draw[green, line width=1pt, dashdotdotted] (D2) circle (12pt); \draw[green, line width=1pt, dashdotdotted] (D3) circle (12pt); \end{tikzpicture}$$
$$ \begin{tikzpicture}[node distance=1cm] \title{Arbitrary Announcement} \node(A4) [white] {$p,q,r$}; \node(B2) [below of= A4, white] {$ p,q$}; \node(B1) [left of= B2, white] {$ p,r$}; \node(B3) [right of=B2, white] {$ q,r $}; \node(D1) [below of=B1, white] {$p$}; \node(D2) [right of=D1, white] {$q$}; \node(D3) [right of=D2, white] {$r$}; \node(E) [below of=D2, white] {$\varnothing$}; \node(F) [below of=E, white] {$[a:\bot]k~~~~(w_3)$ }; \draw[magenta, line width=1pt, dashed] (D1) circle (12pt); \draw[green, line width=1pt, dashdotdotted] (B3) circle (12pt); \draw[green, line width=1pt, dashdotdotted] (D2) circle (12pt); \draw[green, line width=1pt, dashdotdotted] (D3) circle (12pt); \end{tikzpicture} \\ \begin{tikzpicture}[node distance=1cm] \title{Arbitrary Announcement} \node(A4) [white] {$p,q,r$}; \node(B2) [below of= A4, white] {$ p,q$}; \node(B1) [left of= B2, white] {$ p,r$}; \node(B3) [right of=B2, white] {$ q,r $}; \node(D1) [below of=B1, white] {$p$}; \node(D2) [right of=D1, white] {$q$}; \node(D3) [right of=D2, white] {$r$}; \node(E) [below of=D2, white] {$\varnothing$}; \node(F) [below of=E, white] {$[b:r]k~~~~(w_4)$ }; \draw[orange, line width=1pt] (B1) circle (16pt); \draw[cyan, line width=1pt, dotted] (B1) circle (14pt); \draw[green, line width=1pt, dashdotdotted] (B3) circle (12pt); \draw[green, line width=1pt, dashdotdotted] (D2) circle (12pt); \draw[green, line width=1pt, dashdotdotted] (D3) circle (12pt); \end{tikzpicture} $$
$$ \begin{tikzpicture}[node distance=1cm] \title{Arbitrary Announcement} \node(A4) [white] {$p,q,r$}; \node(B2) [below of= A4, white] {$ p,q$}; \node(B1) [left of= B2, white] {$ p,r$}; \node(B3) [right of=B2, white] {$ q,r $}; \node(D1) [below of=B1, white] {$p$}; \node(D2) [right of=D1, white] {$q$}; \node(D3) [right of=D2, white] {$r$}; \node(E) [below of=D2, white] {$\varnothing$}; \node(F) [below of=E, white] {$[b:\neg r]k~~~~(w_5)$ }; \draw[orange, line width=1pt] (B1) circle (16pt); \draw[cyan, line width=1pt, dotted] (D1) circle (14pt); \draw[magenta, line width=1pt, dashed] (D1) circle (12pt); \draw[green, line width=1pt, dashdotdotted] (B3) circle (12pt); \draw[green, line width=1pt, dashdotdotted] (D2) circle (12pt); \draw[green, line width=1pt, dashdotdotted] (D3) circle (12pt); \end{tikzpicture} \\ \\ \begin{tikzpicture}[node distance=1cm] \title{Arbitrary Announcement} \node(A4) [white] {$p,q,r$}; \node(B2) [below of= A4, white] {$ p,q$}; \node(B1) [left of= B2, white] {$ p,r$}; \node(B3) [right of=B2, white] {$ q,r $}; \node(D1) [below of=B1, white] {$p$}; \node(D2) [right of=D1, white] {$q$}; \node(D3) [right of=D2, white] {$r$}; \node(E) [below of=D2, white] {$\varnothing$}; \node(F) [below of=E, white] {$[b:\bot]k~~~~(w_6)$ }; \draw[orange, line width=1pt] (B1) circle (16pt); \draw[green, line width=1pt, dashdotdotted] (B3) circle (12pt); \draw[green, line width=1pt, dashdotdotted] (D2) circle (12pt); \draw[green, line width=1pt, dashdotdotted] (D3) circle (12pt); \end{tikzpicture}$$
$$\begin{tikzpicture}[node distance=1.5cm] \title{Arbitrary Announcement} \node(A4) [white] {$p,q,r$}; \node(B2) [below of= A4, white] {$ p,q$}; \node(B1) [left of= B2, white] {$ p,r$}; \node(B3) [right of=B2, white] {$ q,r $}; \node(D1) [below of=B1, white] {$p$}; \node(D2) [right of=D1, white] {$q$}; \node(D3) [right of=D2, white] {$r$}; \node(E) [below of=D2, white] {$\varnothing$}; \node(F) [below of=E, white] {$k_{s}~~~~(w_s)$ }; \draw[green, line width=1pt, dashdotdotted] (B3) circle (12pt); \draw[green, line width=1pt, dashdotdotted] (D2) circle (12pt); \draw[green, line width=1pt, dashdotdotted] (D3) circle (12pt); \end{tikzpicture} \begin{tikzpicture}[node distance=1.5cm] \title{After announcement} \node(A4) [white] {$w$}; \node(B1) [below left of= A4, white] {$w_{1}$}; \node(B4) [right of=B1, white] {$w_{5}$}; \node(B2) [ below of= B1, white] {$w_{2}$}; \node(B3) [right of=B2, white] {$w_{4}$}; \node(D1) [left of=B2, white] {$w_{3}$}; \node(D3) [right of=B3, white] {$w_{6}$}; \node(E) [below of=D2, white] {$w_{s}$}; \node(F) [below of=E, white] {$m'$}; \draw [->][cyan, line width=1pt, dotted] (B1) -- (D3); \draw [->][cyan, line width=1pt, dotted] (A4) -- (B3); \draw [->][cyan, line width=1pt, dotted] (A4) -- (B4); \draw [->, cyan, line width=1pt, bend left =30, dotted] (A4) to (D3); \draw [->][cyan, line width=1pt, dotted] (B3) -- (D3); \draw [->][cyan, line width=1pt, dotted] (B4) -- (D3); \draw [->][cyan, line width=1pt, dotted] (B2) -- (E); \draw [->][cyan, line width=1pt, dotted] (D1) -- (E); \draw [->][cyan, line width=1pt, dotted] (B1) -- (B3); \draw [->][orange, line width=1pt] (B4) -- (D1); \draw [->][orange, line width=1pt] (A4) -- (B1); \draw [->][orange, line width=1pt] (A4) -- (B2); \draw [->, orange, line width=1pt, bend right =30] (A4) to (D1); \draw [->][orange, line width=1pt] (B1) -- (D1); \draw [->][orange, line width=1pt] (B2) -- (D1); \draw [->][orange, line width=1pt] (B3) -- (E); \draw [->][orange, line width=1pt] (D3) -- (E); \draw [->][orange, line width=1pt] (B4) -- (B2); \end{tikzpicture}$$

Achievements

  • Establishment of the Framework of Social Announcement Logic
  • Proof of the Properties of Social Announcement Logic
  • Model Transformation Technique Dealing with Arbitrary Operators
  • The Development of A Tableau System
  • Variants Exploration for Interdisciplinary Studies

Future Directions

  • Axiomatization of Sincere Arbitrary Social Announcement Logic
  • Extension and Variants Investigation
  • Finite Model Property and Decidability of Arbitrary Social Announcement Logic
  • Relation to Public Announcement Logic
  • Reduction of Group Announcement

Progress in Public Announcement Logic

The free message model technique can also be used in Public Announcement Logic (PAL).

Boolean Arbitrary Public Announcement Logic (BAPAL) is non-compact.

$\{\Diamond B_{a}(\neg B_{a} p \wedge \widehat{B_{b}}p)\wedge \Diamond\widehat{B_{a}} B_{b}\neg p\}\cup \bigcup_{i>0} \{B_{a}\neg p_{i}\}$

Arbitrary Public Announcement Logic (APAL) has a finitary axiomatization.

From $ \langle \chi\rangle\langle \widehat{B_{c}} p \wedge \neg p\rangle\phi\rightarrow\psi$, infer $ \langle \chi\rangle\Diamond\phi\rightarrow\psi$ where both $p$ and $c$ are free.

Complete Sequence

$\langle G! \rangle \phi \leftrightarrow \bigvee_{\vec{a!} \in S(G)} \langle \vec{a!} \rangle \phi$ where $S(G)$ represents all permutations of $G$.

To perfectly reduce a Group Announcement, the goal is to find the shortest sequence that includes all permutations.

$ \langle a! \rangle \langle b! \rangle \langle a! \rangle \phi \leftrightarrow \langle a! \rangle \langle b! \rangle \phi \vee \langle b! \rangle \langle a! \rangle \phi $

For $|G| = 4$, the shortest sequence length is $12$: $\langle a! \rangle \langle b! \rangle \langle c! \rangle \langle d! \rangle \langle a! \rangle \langle b! \rangle \langle c! \rangle \langle a! \rangle \langle d! \rangle \langle b! \rangle \langle a! \rangle \langle c! \rangle$

This remains an unsolved problem and is often associated with the well-known "Haruhi Problem".

Size Length
n = 3 7
n = 4 12
n = 5 19
n = 6 28
n = 7 39

Reference

  • Plaza, Jan (1989). “Logics of public announcements”
  • Gerbrandy, Jelle and Willem Groeneveld (1997). “Reasoning about Information Change”
  • van Ditmarsch, Hans, Wiebe van Der Hoek, and Barteld Kooi (2007). "Dynamic epis- temic logic"
  • Seligman, Jeremy, Fenrong Liu, and Patrick Girard (2013). “Facebook and the epistemic logic of friendship”
  • Kuijer, Bouke (2015). "Unsoundness of R$_{\Box}$"
  • Christoff, ZoĂ© (2016). “Dynamic logics of networks: information flow and the spread of opin- ion”
  • Xiong, Zuojun (2017). “On the logic of multicast messaging and balance in social networks”
  • Xiong, Zuojun et al. (2017). “Towards a logic of tweeting”

Thank you